
24U SimpleHelp Plug-In 3.2

User’s Guide

24U Software

July 7, 2006



2



Contents

1 Introduction 7
1.1 Using this manual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Using other documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 24U SimpleHelp Plug-In Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3.1 Help Tags (Tool Tips) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3.2 Coachmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3.3 Roll-over effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3.4 Special features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.5 Registration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.6 Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.7 Updating from previous version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.8 Automated Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 Using 24U SimpleHelp Plug-In 17
2.1 Using Help Tags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1.1 Static Tags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.1.2 Dynamic Tags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.1.3 Alternate Tags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.1.4 Persistent Tags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.1.5 Customizing Help Tags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.1.6 Named Layouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.1.7 Global Tags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2 Using Coachmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2.1 Displaying Coachmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.2.2 Customizing Coachmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3 Using Roll-over Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 Using 24U SimpleHelp Utility 27
3.1 Preparing your solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2 Defining Static Help Tags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3 Defining Dynamic Help Tags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.4 Defining Roll-Over Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.5 Creating Guided Tours . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4 Function Reference 35
4.1 SHelp AttachTags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2 SHelp DetachTags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.3 SHelp Get . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.4 SHelp Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.5 SHelp Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.6 SHelp ShowCoach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.7 SHelp ShowTag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.8 SHelp Version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3



4 CONTENTS



List of Figures

1.1 A confusing graphical button . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2 A graphical button explained by help tag . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3 A graphical button explained in detail . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.4 A coachmark guiding the user to a checkbox . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.5 A text button activated by roll-over . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.6 Installing plug-in on Mac OS X and Windows . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.7 Entering an end-user license code in the registration dialog . . . . . . . . . . . . . . . . . 12
1.8 Invoking the registration dialog manually . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.9 Selecting a startup script in the File Options window . . . . . . . . . . . . . . . . . . . . . 14
1.10 FileMaker’s documentation on Auto Update . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.11 24U Plug-In AutoInstaller in the Support folder . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1 Mouse pointer outside and inside a hot rectangle . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Choosing a startup script for a database . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3 Obtaining hot rectangle’s coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4 Syncing printing and screen coordinate systems . . . . . . . . . . . . . . . . . . . . . . . . 19
2.5 A Print button . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.6 A button circled with a coachmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1 The Sample Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 Importing utility scripts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3 Selecting target field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.4 Options for generating help tags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.5 Help tag editing dialog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.6 Removing unwanted help tags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.7 Editing the attaching script . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.8 Selecting a dynamic tag handling script . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.9 Selecting a roll-over activator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.1 Sample help tag and its hot rectangle’s coordinates . . . . . . . . . . . . . . . . . . . . . . 36
4.2 Sample buttons and coach mark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5



6 LIST OF FIGURES



Chapter 1

Introduction

Welcome to 24U SimpleHelp Plug-In. This FileMaker plug-in allows you to make your FileMaker
databases easier to use by implementing help tags (also known as tool tips), guided tours, roll-over
effects and other context sensitive help. Doing so will save you a lot of time you would otherwise spend
by answering frequent technical support calls or writing complex manuals.

1.1 Using this manual

This User’s Guide contains an introduction to 24U SimpleHelp Plug-In’s features and provides step-by-
step instructions on implementing the most common guidance into FileMaker solutions. The main part
of this manual closely corresponds with the SimpleHelpTutorial.fp7 file which you can use to test the
described functions directly in FileMaker Pro or FileMaker Pro Advanced. You will also find a complete
reference of 24U SimpleHelp Plug-In’s functions, their parameters, and possible returned results at the
end of this guide.

Note: All information referring to “FileMaker Pro” in this guide applies to both FileMaker Pro and
FileMaker Pro Advanced products unless explicitly specified otherwise.

1.2 Using other documentation

The 24U SimpleHelp Plug-In’s documentation provides a variety of different learning paths to making
your FileMaker development easier and more efficient by implementing 24U SimpleHelp Plug-In into your
solutions.

The following documents are included with the plug-in

• ReadMe.html is an intentionally brief introduction to the plug-in, which you can easily read and
quickly find basic general information there. It also contains a short Troubleshooting section with
the most frequently asked support questions answered.

• UsingFMPlugIns.html is an introduction to FileMaker plug-ins in general. If you have never
used FileMaker plug-ins before, read this document to see how easy and safe it is to use plug-ins
to extend FileMaker’s abilities.

7



8 CHAPTER 1. INTRODUCTION

• SimpleHelpUsersGuide.pdf (this manual) contains comprehensive printable instructions for us-
ing 24U SimpleHelp Plug-In. The guide is structured the same way as the tutorial mentioned below,
so that you can easily test the techniques you read about by jumping to the tutorial.

• SimpleHelpTutorial.fp7 is a FileMaker document that will guide you through all the different
features of 24U SimpleHelp Plug-in, while letting you immediately try them out and practice by
modifying the predefined fields and sample scripts.

• ReleaseNotes.html lists all changes and feature additions across past version of 24U SimpleHelp
Plug-in. This information will help you to maintain compatibility of your solutions when updating
to a new version of the plug-in.

• HowToRegister.html contains detailed description of all available licensing options, along with
instructions for obtaining your own license for 24U SimpleHelp Plug-In.

• LicenseAgreement.html defines the legal terms under which you can use 24U SimpleHelp Plug-
In within your license. If you get a developer license, see also the Support folder for the Sam-
pleAboutScreen.pdf and LicensePasteIn.html files, which serve as examples of about screen
and license agreement terms for your solution.

Even more useful learning resources can be found in the following folders:

• Examples contains simple but meaningful FileMaker solutions which utilize the features offered
by 24U SimpleHelp Plug-In.

• Support contains additional tools that make implementing 24U SimpleHelp Plug-In into your
solutions even easier.

In addition to the documentation bundled with the plug-in, you can always find new and updated
information on the http://www.24uSoftware.com web site. Make sure to check it regularly to make
your work simple.

1.3 24U SimpleHelp Plug-In Overview

Here is an overview of the new abilities you add to FileMaker Pro by installing 24U SimpleHelp Plug-In.

1.3.1 Help Tags (Tool Tips)

With 24U SimpleHelp Plug-In your solution can display short onscreen hints for user interface elements
to the user. This context sensitive help is displayed in small boxes usually called tool tips or help tags.
We will use the term help tags further in this manual.

Help tag is typically displayed when the user moves the mouse pointer over the user interface element,
such as button or data field, and waits a few seconds. This indicates to the application that the user is
not sure about the meaning of the object, and so the application responds by displaying a help tag. The
example of such a bad user experience is shown at figure 1.1 and figure 1.2 shows the expected behavior.

In solutions with graphical user interface based on icons and pictures it is essential to provide short
descriptions for buttons to the user. Even one-word description can save the user a lot of time.

http://www.24uSoftware.com


1.3. 24U SIMPLEHELP PLUG-IN OVERVIEW 9

Figure 1.1: A confusing graphical button

Figure 1.2: A graphical button explained by help tag

However, if a more detailed description is necessary, 24U SimpleHelp Plug-In can still help. 24U Simple-
Help Plug-In lets you define help tags for all kinds of layout objects, such as buttons, fields, rectangles,
ovals, or pictures. You can define different sets of help tags for different layouts, you can calculate the
help tag’s text on-the-fly at the time when it is to be displayed. You can also easily display different
hints for the same object based on the modifier keys currently pressed.

For more information about using help tags, see section 2.1 at page 17.



10 CHAPTER 1. INTRODUCTION

Figure 1.3: A graphical button explained in detail

1.3.2 Coachmarks

A coachmark is an onscreen graphic that circles or points to an item on the screen. With 24U SimpleHelp
Plug-In you can use coachmarks in FileMaker solutions to guide the user’s attention to screen areas
described in a help instruction, typically if the user needs to perform an action (for example, to click on
a button or type information into a field). Sample coachmark is depicted at the following picture:

Figure 1.4: A coachmark guiding the user to a checkbox

With the help of coachmarks, you can develop step-by-step guided instructions for difficult processes,
and teach the user effectively by emphasizing important user interface elements.

For more information about using coachmarks, see section 2.2 at page 23.

1.3.3 Roll-over effects

The world wide web probably made you used to see and/or hear some effect when you roll the mouse
pointer over an active link. We call this a “roll-over effect.” The only roll-over effect FileMaker supports



1.3. 24U SIMPLEHELP PLUG-IN OVERVIEW 11

by its nature is changing cursor’s shape after moving the mouse pointer over a button. 24U SimpleHelp
Plug-In extends this ability to any other effect you can implement by FileMaker scripts.

With 24U SimpleHelp Plug-In you can have a script triggered when the mouse pointer enters a defined
“hot rectangle” on your layout, and another script can be triggered when the mouse pointer leaves this
“hot rectangle”.

For example, if you define a text object as a button, you can make the text to change its color and style
in response to moving the mouse pointer over it, just like web browsers usually highlight links.

Figure 1.5: A text button activated by roll-over

For more information about using roll-over effects, see section 2.3 at page 25.

1.3.4 Special features

In order to build an effective help system, you may want to combine help tags, coachmarks and roll-over
effects with additional functions. A few such special features are already available in 24U SimpleHelp
Plug-In.

• When displaying a dynamic help tag, or activating a roll-over effect, 24U SimpleHelp Plug-In lets
you check the current mouse position, so that you can react more precisely to the user’s action.

• After displaying a coachmark, you may require the user to click somewhere. To check if the user
has really clicked on the right position, 24U SimpleHelp Plug-In lets you check where the mouse
pointer was at the time of last mouse click.

• Although these special features were added to 24U SimpleHelp Plug-In mainly to extend the us-
ability of its main features, of course you can use them also separately, for other specific purposes.
For example, you can easily implement a clickable image map, that is a single button triggering a
single script but performing different actions base on the actual position within the button where
the user clicked.

For more information about special features, see chapter 4 at page 35. The actual way you will utilize
them is limited only by your imagination.



12 CHAPTER 1. INTRODUCTION

1.4 Installation

For a plug-in to be recognized, you have to copy it to a folder where FileMaker Pro will recognize it. This
is the Extensions folder inside the FileMaker application’s folder.

To install 24U SimpleHelp Plug-In, find the plug-in’s version for your operating system, and copy it to
the FileMaker’s Extensions folder. Use the plug-in with the “fmplugin” extension for Mac OS X, and the
one with the “fmx” extension for Windows.

Figure 1.6: Installing plug-in on Mac OS X and Windows

1.5 Registration

24U SimpleHelp Plug-In is shareware and if you don’t register it, it will stop working when your trial
period is over. After purchasing a license, you will receive a code, which you can use to register your
copy of 24U SimpleHelp Plug-In.

There are two ways how to register 24U SimpleHelp Plug-In. If you have an end-user license (different
from a developer license), you can enter your registration code into the plug-in’s registration dialog, and
have it stored permanently on your hard disk.

Figure 1.7: Entering an end-user license code in the registration dialog

The registration dialog should appear automatically when you use 24U SimpleHelp Plug-In for the first
time after launching FileMaker Pro. If the registration dialog does not appear automatically, you can
force it to be displayed by opening Application Preferences, going to Plug-Ins, selecting 24U SimpleHelp
Plug-In, and clicking on its Configure button.



1.5. REGISTRATION 13

Figure 1.8: Invoking the registration dialog manually

If you have a developer license, or if you want to automate installation of 24U SimpleHelp Plug-In in a
networked multi-user solution, you can register the plug-in also programatically from within a script.

To make sure that the plug-in gets registered before it is used for the first time, call the following script
from within your solution’s startup script:

If [SHelp_Register("put your registration code here") <> 0]
# Registration failed, plug-in will not work

Else
# The plug-in has been granted to work

End If

To define a startup script, choose the File Options item from the File menu, then check the “Perform
script” checkbox in the “When opening this file” group, and select your startup script from the pop-up
menu.

! Important: If you pass an invalid code to the SHelp_Register function, a registration dialog will
appear, and so you still have a chance to register the plug-in. But if you fail to register it, the plug-in will
stop working and return an error code as a result of the registration function. So make sure to include an
appropriate handling code in your registration script for the case when the plug-in refuses to work due
to an invalid registration.

Note: Using a developer license registration code may cause a splash dialog to appear on the screen for
about 2 seconds at the quit time of your solution. The splash helps you to comply with our License Agree-
ment without having to design your own about screen. If you don’t want your solution to show the splash
dialog, send us samples of your about screen and license agreement to registration@24uSoftware.com.
We will send you instructions for disabling the splash as soon as your solution is proven to comply with
the developer license’s sublicensing conditions.

mailto:registration@24uSoftware.com


14 CHAPTER 1. INTRODUCTION

→

Figure 1.9: Selecting a startup script in the File Options window

1.6 Support

Before you contact our technical support regarding problems or difficulties using 24U SimpleHelp Plug-In,
please check if your issue is not listed in the Troubleshooting section of the ReadMe.html document.

If your problem is not listed in the ReadMe.html document or if the recommended solution does not
work for you, please visit our technical support web page at http://www.24uSoftware.com/support.php
for assistance. If you don’t find a solution for your issue in our support database, you can use our on-line
contact form to send a question to our technical support. You can also send your question directly to
our support e-mail address support@24uSoftware.com.

Please make sure to specify exact steps to reproduce your issue, as well as relevant detailed information
about your system configuration, when contacting our technical support. If we are able to reproduce
your situation, we will not have to request more information from you, and so we will likely be able to
provide a solution to your problem in the very first response.

1.7 Updating from previous version

Before updating your copy of 24U SimpleHelp Plug-In to a newer version, you should consult the Re-
leaseNotes.html document for any changes that might affect compatibility of your solution with the
new version.

Although we are trying to make all new plug-ins compatible with their previous versions, you should
always check if the currently available version of 24U SimpleHelp Plug-In is the one you expect. You
should perform this check before using any of the plug-in’s functions, as using a wrong version may result
in unexpected behavior.

To actually update the plug-in, first quit FileMaker Pro, then remove the old version of the plug-in, and
then follow the installation instructions. Always make sure that you don’t have two different copies or
versions of the same plug-in installed in the same FileMaker Pro application at the same time.

http://www.24uSoftware.com/support.php
mailto:support@24uSoftware.com


1.8. AUTOMATED INSTALLATION 15

The best way to check 24U SimpleHelp Plug-In’s version is to call a script like this from within your
solution’s startup script:

If [SHelp_Version("") = "" or SHelp_Version("") = "?"]
Show Custom Dialog ["Error"; "24U SimpleHelp Plug-In is missing or not active."]
# Make sure the plug-in is not used

Else
If [SHelp_Version("") <> "3.2"]
Show Custom Dialog ["Error"; "An unsupported version of 24U SimpleHelp Plug-In
is installed."]
# Make sure the plug-in is not used

Else
# It is safe to use the plug-in

End If
End If

Tip: You can get more information from the SHelp_Version function by passing a parameter to it.
The SHelp_Version("long") call will return the plug-in’s official name followed by version number (i.e.
“24U SimpleHelp Plug-In 3.2”). The SHelp_Version("platform") call will return an identification of
the plug-in’s code currently running. Although you will probably never use this value in your solutions,
it may be helpful as an additional information when specifying a question for our technical support.

1.8 Automated Installation

Each required plug-in must be installed and registered on every client (every computer running FileMaker
Pro and connecting to FileMaker Server) calling its functions. This may be very tiring when you have
tens of clients in a network. Another pain is re-doing the installation each time the plug-in gets updated.

FileMaker Server cannot host plug-ins to FileMaker clients, but it can distribute plug-ins to your clients
using an Auto Update feature. By putting all your plug-ins into a special folder on the server, you
make them available through the FileMaker’s Auto Update plug-in, which can automatically install any
required plug-in if it is not installed for a local client or if the local version is not the right version. See
the documentation accompanied with FileMaker Server for more information on using the Auto Update
feature.

You can ease the installation and updates of 24U SimpleHelp Plug-In and other plug-ins to all your
networked FileMaker clients from FileMaker Server by using 24U Plug-In AutoInstaller, which comes
pre-configured with 24U SimpleHelp Plug-In for your convenience.

After being incorporated into your solution 24U Plug-In AutoInstaller will maintain a list of all plug-
ins required by your solution, alongwith their required versions and registration codes, and remove all
your pain from using plug-ins. This utility will automate installations, registrations, and updates of all
the plug-ins you use in your multi-user FileMaker solutions. It comes pre-configured for 24U FileMaker
Plug-Ins, but it can be used for other 3rd party plug-ins as well.



16 CHAPTER 1. INTRODUCTION

Figure 1.10: FileMaker’s documentation on Auto Update

Figure 1.11: 24U Plug-In AutoInstaller in the Support folder



Chapter 2

Using 24U SimpleHelp Plug-In

This chapter explains how you can easily use 24U SimpleHelp Plug-In to:

• define tool tips (help tags) for buttons, fields, and other layout objects

• display different context-sensitive help based on current conditions

• guide the user through a procedure using persistent help tags

• guide the user to a specific object by drawing a coachmark around it

• indicate active areas by providing roll-over effects to the user

Note: Examine the 24uSimpleHelpTutorial.fp7 file to see the individual features explained here
actually implemented. Try to edit the file’s scripts to modify the plug-in’s behavior.

2.1 Using Help Tags

The basic feature of 24U SimpleHelp Plug-In is the ability to display a help tag (also known as tool tip)
when you move the mouse pointer over a specific object, such as button or field. This works by first
defining rectangular areas that are sensitive to mouse pointer location. We call them hot rectangles.

As long as the mouse pointer is outside of a hot rectangle, nothing special happens. After moving the
mouse pointer over the hot rectangle and leaving it there for some time, a help tag appears and stays on
the screen until the mouse pointer leaves the hot rectangle.

Figure 2.1: Mouse pointer outside and inside a hot rectangle

17



18 CHAPTER 2. USING 24U SIMPLEHELP PLUG-IN

2.1.1 Static Tags

The simplest kind of help tag supported by 24U SimpleHelp Plug-In is a static help tag. It is permanently
attached to a single hot rectangle of a single layout in a single FileMaker database. Its definition (hot
rectangle and text to display) stays unchanged until it is detached.

To define a hot rectangle and attach a help tag to it, use the SHelp_AttachTags function. In the following
script, a hot rectangle with coordinates 100, 100, 200, 130 gets attached a help tag with the text “This
is the sample tag”.

If [SHelp_AttachTags("100,100,200,130"; "This is the sample tag") <> 0]
# Attaching a tag failed because of an error (or maybe invalid parameters)

End If

Note that this script attaches the help tag only for the current layout of the frontmost database. To
make the same hot rectangle work also in another layout, you need to switch to that layout, and attach
the help tag again. Alternatively, you can utilize named layouts described in section 2.1.6 at page 22,
and a global layout described in section 2.1.7 at page 23.

All attached help tags get automatically detached (removed) when you close the database, or quit the
FileMaker application. If you want the help tags to work the next time you open the database, create a
startup script, and call your attaching script(s) from it.

Figure 2.2: Choosing a startup script for a database

To manually remove an attached tag, use the SHelp_DetachTag function with exactly the same coordi-
nates you used to attach it:

If [SHelp_DetachTags("100,100,200,130";) <> 0]
# Detaching the tag failed because of an error (or maybe invalid parameters)

End If



2.1. USING HELP TAGS 19

To manually remove all help tags attached to the current layout, specify the word all instead of the hot
rectangle coordinates:

If [SHelp_DetachTags("all";) <> 0]
# Detaching the tag failed because of an error (or maybe invalid parameters)

End If

Both the SHelp_AttachTags and SHelp_DetachTags functions return 0 to indicate success, or a non-zero
number to indicate an error. You may want to check for the result and perform some additional actions
in the case of failure.

You can use 24U SimpleHelp Utility (explained later in a separate chapter) to easily define help tags for
layout objects without having to manually find and enter their coordinates. If you want to define hot
rectangles by hand anyway, you can use the Object Size palette in FileMaker’s layout mode.

Figure 2.3: Obtaining hot rectangle’s coordinates

! Important: 24U SimpleHelp Plug-In uses “screen coordinates”, which are always the same, while File-
Maker displays “printing coordinates” in the Object Size palette. The printing coordinates are dependent
on the current printer selection and page setup, so they usually do not match the screen coordinates. To
sync these two coordinate systems, and so simplify defining SimpleHelp’s hot rectangles, set the layout’s
printing options to use fixed margins, and set the left and top margins to 0. This will make the printing
coordinates independent on the printer selection, so they will match the screen coordinates.

Figure 2.4: Syncing printing and screen coordinate systems



20 CHAPTER 2. USING 24U SIMPLEHELP PLUG-IN

Note: As the function names advise, you can attach or detach multiple help tags at once. To do that,
simply add their definitions as additional parameters.

Tip: Since every hot rectangle is attached only to the current layout, you may prefer to define hot
rectangles for all your layouts at once from within your startup script, and then let the 24U SimpleHelp
Plug-In do all the remaining work for you.

2.1.2 Dynamic Tags

Although it is pretty helpful to display a static help text description in a help tag, sometimes it would
be even more useful if you had a chance do decide what to display in the help tag right at the time it is
to be displayed. To display such a dynamic tag, attach a script name instead of your help text to your
hot rectangle, preceded with the “$$” prefix:

If [SHelp_AttachTags("100,100,200,130"; "$$Display a Dynamic Tag") <> 0]
# Attaching a tag failed because of an error (or maybe invalid parameters)

End If

Moving the mouse pointer over a hot rectangle defined by the above script will not display a help tag
immediately. Instead, it will try to find a script named “Display a Dynamic Tag”, and if it is found,
SimpleHelp will trigger it. The script can then evaluate current conditions, and display a help tag with
a dynamically calculated text.

For example, the following script will display current time in the help tag, provided it is triggered by
SimpleHelp as a reaction to touching a hot rectangle with the mouse pointer:

If [SHelp_ShowTag("this"; GetAsText(Get(CurrentTime))) <> 0]
# Displaying a tag failed because of an error (or maybe invalid parameters)

End If

2.1.3 Alternate Tags

Once you have defined a help tag to calculate its contents dynamically, it’s quite easy to have it display
different messages based on the current modifier keys combination. This way you can display just short
button/field descriptions by default, and still deliver more detailed instructions on demand.

You can use the Get(ActiveModifierKeys) function to check what modifiers are currently down:

If [SHelp_ShowTag("this";
Case(Get(ActiveModifierKeys); "Alternate Help"; "Default Help")) <> 0]

End If

The problem with this tag, however, is that it does not update itself when you change the modifier keys
combination. To see the alternative help, you have to leave the hot rectangle, press a modifier key, and
move the mouse pointer back to the hot rectangle while holding the modifier key.



2.1. USING HELP TAGS 21

To have a dynamic help tag updated each time the modifier keys are pressed or depressed, without having
to leave the hot rectangle, you can set up a one-time trigger with the SHelp_Set function:

If [SHelp_ShowTag("this";
Case(Get(ActiveModifierKeys); "Alternate Help"; "Default Help"))]

End If
# The following script step will cause the current script to be re-triggered
# when modifier keys are (de)pressed while still being in the hot rectangle
If [SHelp_Set("on-modifiers"; Get(ScriptName))]
End If

The above script not only displays a help tag, but also schedules itself to be triggered again when any of
the modifier keys is pressed or depressed.

2.1.4 Persistent Tags

Besides displaying help tags under current mouse position, you may also want to create guiding scripts
which display their own help tags at specific positions. 24U SimpleHelp Plug-In lets you do this using
the SHelp_Set function, specifying the tag’s position in the first parameter:

If [SHelp_ShowTag("100,100"; "This is persistent help tag")) <> 0]
# Displaying a tag failed because of an error (or maybe invalid parameters)

End If

! Important: All help tags displayed this way are persistent. They don’t disappear from the screen until
you ask them to disappear. To remove all persistent tags, use the SHelp_ShowTag function with empty
parameters:

If [SHelp_ShowTag("";) <> 0]
# Help tags could not be removed because of an error

End If

Tip: You can take advantage of the FileMaker 8’s ability to pass parameters to scripts, and use just a
single script to display many different persistent tags in response to different button being clicked.

2.1.5 Customizing Help Tags

If you still want more from help tags, there are couple of things you can easily customize with the
SHelp_Set function. This function takes a customizable option’s name as the first parameter, and its
requested new value as the second parameter:

SHelp_Set(option name; value)

You can also check the current value of any customizable option by using the SHelp_Get function:

SHelp_Get(option name)



22 CHAPTER 2. USING 24U SIMPLEHELP PLUG-IN

With the version 3.2 of 24U SimpleHelp Plug-In you can easily customize all the following attributes of
help tags:

• Background color

• Frame color (only on Windows)

• Text color

• Popup delay (the time to wait after entering a hot rectangle before a help tag finally appears)

To modify any of these options, the SHelp_Set can be used. For example, the following function sets the
background of help tags to light blue:

SHelp_Set("tag-background-color"; "#99CCFF")

On Windows, you can also use the following special function to make help tags reflect the system’s
settings for tool tips:

SHelp_Set("system-like";)

In addition to controlling the above options, you can also turn displaying of help tags off temporarily,
without having to detach them, by using special values for the popup delay option:

SHelp_Set("tag-popup-delay"; "off")

SHelp_Set("tag-popup-delay"; "on")

For exact names and possible values of the customizable options, please refer to the Function Reference,
section 4.5 at page 42, or see the Customizing Tags section in the 24uSimpleHelpTutorial.fp7 file.

2.1.6 Named Layouts

By default, 24U SimpleHelp Plug-Ins attaches and displays help tags for the current layout of the front-
most FileMaker database window. This is quite convenient when you develop a simple solution with 1 to
20 layouts, but starts to be annoying when you have to go through tens or hundreds of layouts to define
your help tags.

With the introduction of the version 3.1 of 24U SimpleHelp Plug-In, you can use the following function
to make SimpleHelp think the current layout is what you want it to think, not what it really is:

SHelp_Set("current-layout"; "layout name")

After evaluating this function, SimpleHelp starts ignoring the current layout and sticks with the specified
“layout name” layout until you tell it otherwise. To re-activate SimpleHelp’s default behavior of being
sensitive to current layout, call the same function with an empty layout name:

SHelp_Set("current-layout"; "")

! Important: Although you can cheat on SimpleHelp’s recognition of the current layout, it is still sensitive
to the current (frontmost) database file. So only the current file will get cheated, and current layout will
still be correctly recognized in other files. To cheat on current layout after bringing another file’s window
to front, you have to use the above described function again.



2.2. USING COACHMARKS 23

Tip: SimpleHelp does not care if the layout name supplied to it via the SHelp_Set("current-layout";
"layout name") function really exists in the current file. You can use any string as a layout name,
creating a virtual layout this way. Then you can easily switch between different help configurations by
simply switching your virtual layouts.

2.1.7 Global Tags

When your solution shares the same user interface elements, such as navigation buttons, across multiple
layouts, you know how annoying it is to do the same work again and again for each layout. To avoid
defining the same set of help tags for each individual layout, 24U SimpleHelp Plug-In 3.2 lets you set a
named layout to behave as being always active:

SHelp_Set("global-layout"; "layout name")

After specifying a global layout with the above function, SimpleHelp will consider all help tags defined
for the “layout name” layout to be defined for all layouts. This way you can only define the global help
tags once, and add just the layout-specific tags to each individual layout.

To deactivate the global tags, simply set the global layout to none using the following function:

SHelp_Set("global-layout"; "")

! Important: Just like named layous, also the global layout setting is specific to the current file and does
not affect SimpleHelp’s behavior for other files.

Tip: Since you can define help tags for non-existing virtual layouts, it is a good idea to use a virtual
layout for your global tags. You can even have multiple help tag sets attached for multiple virtual layouts
and easily switch between them based on current user context.

2.2 Using Coachmarks

With 24U SimpleHelp Plug-In you can easily develop a guiding script which takes the user and drives
him or her through a specific procedure step-by-step, while displaying instructions for each step in a
persistent help tag. In addition to using persistent help tags, you can navigate the user even better by
using coachmarks.

A coachmark is an onscreen graphic that circles an item on the screen, or an object on a database layout.
You can use coachmarks to guide the user’s attention to layout objects described in a help instruction,
typically if the user needs to perform an action (for example, to click on a button or type text into a
field).



24 CHAPTER 2. USING 24U SIMPLEHELP PLUG-IN

2.2.1 Displaying Coachmarks

Let’s say you have a Print button on your layout, and you want to show the user where the Print button
is.

Figure 2.5: A Print button

To draw a coachmark around a layout object, use the SHelp_ShowCoach function, passing it coordinates
of a rectangular area you want to have circled:

If [SHelp_ShowCoach("100,200,200,225") <> 0]
# Coachmark could not be drawn because of an error

End If

Running the above script will cause the Print button to get circled with a colored oval, called coachmark.
After drawing a coachmark you will probably want the user to click on the circled object. When you

Figure 2.6: A button circled with a coachmark

discover that the user has successfully done that (for example clicked on a button and started your script),
you can hide the coachmark, as it is not needed any more.

To hide all coachmarks, simply use the same SHelp_ShowCoach function with an empty string as a
parameter.

If [SHelp_ShowCoach("") <> 0]
# Coachmark could not be hidden because of an error

End If

Tip: Use a coachmark to guide the user’s attention to a button, and a help tag to inform him what
action is attached to the button. To see an example of such combination, open the Contacts.fp7 file in
the Examples folder, and run the script “Help: Switching between phone, address and e-mail”.



2.3. USING ROLL-OVER EFFECTS 25

2.2.2 Customizing Coachmarks

Just like help tags, also coachmarks can be customized with the SHelp_Set function. The version 3.2 of
24U SimpleHelp Plug-In allows you to customize the color used to draw coachmarks:

SHelp_Set("coach-color"; color code)

Please refer to the Function Reference in this manual for more information on valid color codes accepted by
the SHelp_Set function. See the section Customizing Coachmarks of the 24uSimpleHelpTutorial.fp7
file to immediately test differently colored coachmarks.

2.3 Using Roll-over Effects

To implement a roll-over effect, you have to define a hot rectangle just like you would do it for a dynamic
help tag. The only difference will be the script you attach to the hot rectangle:

If [SHelp_AttachTags("100,100,200,130"; "$$Activate Roll-Over") <> 0]
# Attaching a tag failed because of an error (or maybe invalid parameters)

End If

Now you need to write the “Activate Roll-Over” script to perform the action(s) you want to have per-
formed as a response to entering the hot rectangle. For example, you can have a graphical button
represented by a container field, and you may want to change the button’s picture:

Set Field [GUI::ButtonPicture; GUI::ActiveButton]

or, in the case of text buttons, you may want to store the button’s number:

Set Field [GUI::ButtonNumber; 1]

and create an unstored calculation field for each button, with formatting based on that value:

Button1 =

Let([ buttonname = "Print" ];
Case(ButtonNumber = 1;
TextStyleAdd(TextColor(linkname; RGB(255; 0; 0)); Underline);
linkname))

Now you have a hot rectangle defined to activate your roll-over effect. But you also need the roll-over
deactivated when the mouse pointer leaves the hot rectangle. To make the effect complete, you have to
set up another script to be triggered when you leave the hot rectangle. Do this as a last step of your
“Activate Roll-Over” script:

If [SHelp_Set("on-hide"; "Deactivate Roll-Over")]
End If

Finally, write your “Deactivate Roll-Over” script similarly to your activation script. You may even save
some time by duplicating the activation script and modifying it.



26 CHAPTER 2. USING 24U SIMPLEHELP PLUG-IN

For graphical button, the deactivation script may look like this:

Set Field [GUI::ButtonPicture; GUI::InactiveButton]

And this can be your deactivation script for text buttons:

Set Field [GUI::ButtonNumber; 0]

Tip: Set the tag-popup-delay configurable option to 0.02 to have your roll-over effects work instantly.
See the Function Reference for the SHelp_Set function later in this manual, or examine the script Make
Help Tags Appear Instantly in the 24uSimpleHelpTutorial.fp7 file for an example.



Chapter 3

Using 24U SimpleHelp Utility

The 24uSimpleHelpUtility.fp7 file that comes with 24U SimpleHelp Plug-In will help you to add visual
aids, such as help tags, roll-over effects and guided tours, to your solutions quickly and easily. Instead of
examining coordinates of every single object and defining your help tags and other effects by hand, you
can simply run a few scripts, and have all the necessary code generated for you automatically.

To make your work really easy, 24U SimpleHelp Utility will appreciate if you have also 24U SimpleDialog
Plug-In 2.7 installed. With this additional plug-in, the utility’s user interface will be much more efficient
and comfortable.

Before you start using this utility’s scrips in your own solutions, you can try them out on the Sample
layout to learn how they work and what you can do with them. You can create and edit help tags for
this layout, then have their definitions generated, and then see the results on the Results layout.

Figure 3.1: The Sample Layout

27

http://www.24uSoftware.com/SimpleDialog
http://www.24uSoftware.com/SimpleDialog


28 CHAPTER 3. USING 24U SIMPLEHELP UTILITY

3.1 Preparing your solution

Before you can use 24U SimpleHelp Utility to add help tags and other visual aids to your FileMaker
solution, you need to prepare your solution by following these steps:

1. Make sure you have 24U SimpleHelp Plug-In installed.

2. To make your work with the utility even easier, install also 24U SimpleDialog Plug-In 2.7.

3. Open your solution file.

4. Open the Define Database window, and create a temporary global text field. You will use this field
to store results generated by 24U SimpleHelp Utility.

5. Open ScriptMaker, then click on “Import...”, and open the 24uSimpleHelpUtility.fp7 file.

6. In the Import Scritps dialog, select all scripts with the “SimpleHelp:” prefix, and click on the OK
button to import them.

Figure 3.2: Importing utility scripts

7. Select the imported script “SimpleHelp: Generate Tag Defs...” and click “Edit...”.

8. Locate the Set Field script step preceded by “MODIFY THE FOLLOWING...” comments, and
modify it to store its result to the temporary field you created in the step 4. Now you should be
ready to start using the imported utility scripts in your solution.

Once you have imported the utility scripts and selected the target field for your help tag definitions, you
are ready to start adding help to your layouts.

3.2 Defining Static Help Tags

24U SimpleHelp Plug-In has an ability to search the current layout for objects, and batch-generate help
tags for them. 24U SimpleHelp Utility takes advantage of this feature and lets you generate help tags



3.2. DEFINING STATIC HELP TAGS 29

Figure 3.3: Selecting target field

for all objects of a specified kind by running a single script. Another script then lets you edit the text of
each help tag, and yet another script then generates the definitions for you.

After preparing your solution as described in section 3.1 at page 28, you can easily define static help tags
by applying these steps on each layout:

1. Switch to the layout you want to define help tags for.

2. Run the “SimpleHelp: Create Tags...” script to create help tags with default text for your layout’s
objects. If you have 24U SimpleDialog Plug-In installed, you will get prompted for initial text
message and kind of objects to attach the help tags to. Without 24U SimpleDialog Plug-In, you
will only be able to generate help tags for fields and buttons.

Figure 3.4: Options for generating help tags Figure 3.5: Help tag editing dialog

3. Now move the mouse pointer over an object so that its default help tag appears, then run the
“SimpleHelp: Modify Tag...” script. With SimpleDialog, you will be able to edit the help tag’s text
immediately in a pop-up dialog. Without SimpleDialog, you will be offered to change the tag’s text
to a time stamp, so that you can later recognize the tag in the generated definitions, and edit it.
Repeat this step for every help tag.

4. If you have 24U SimpleDialog Plug-In installed, you can now help yourself by running the “Simple-
Help: Remove Tags...” script to remove any remaining unwanted help tags.



30 CHAPTER 3. USING 24U SIMPLEHELP UTILITY

Figure 3.6: Removing unwanted help tags

5. When you are done editing your help tags, run the “SimpleHelp: Generate Tag Defs...” script to
generate your tag definitions and put them into your results field.

6. Copy the generated definitions from your results field to clipboard, and open ScriptMaker.

7. Duplicate the “SimpleHelp: Attach Tags” script (you need one for each layout).

8. Modify the duplicated script as advised by the included comments. There are only two modifications
needed. First, you need to make the script go to the correct layout. Then you paste your definitions
from the clipboard into the If script step containing the SHelp_AttachTags function. Alternatively,
you can store the tag definitions in a field, and use the field as a parameter for the SHelp_AttachTags
function.

Figure 3.7: Editing the attaching script

9. Make sure your “Attach Tags” script(s) get called from your solution’s startup script.

Tip: The “SimpleHelp: Modify Tag...” script always edits the last displayed help tag. Therefore running
the script by choosing if from the menu is not always good as you can accidentally activate another help
tag while going to the menu. Much better is running the script with a keybord shortcut.



3.3. DEFINING DYNAMIC HELP TAGS 31

3.3 Defining Dynamic Help Tags

To make a help tag calculate its text message dynamically, you start by defining a script to get called
instead of displaying a help tag. Within the script, you can then decide on-the-fly what message you
want to display.

24U SimpleHelp Utility has a template script made especially for this purpose. This script not only
displays a help tag, but also schedules itself to be run again when the user presses or depresses a mod-
ifier keys. This way you can easily display different help messages based on the current modifier keys
combination.

Follow these steps to define a dynamic help tag:

1. Create a copy of the “SimpleHelp: Display Tag” script and give it a unique name.

2. Modify the duplicated script to display the text of your desire.

3. When modifying your help tag with the “SimpleHelp: Modify Tag...” script, click on the “run a
script...” radio button, and enter the name of the script you created in the step 1.

Figure 3.8: Selecting a dynamic tag handling script

! Important: The “SimpleHelp: Modify Tag...” script requires 24U SimpleDialog Plug-In 2.7 to be in-
stalled to be able to offer you the “run a script...” option. If you don’t have 24U SimpleDialog Plug-In
2.7 installed, you will have to edit the generated help tag definitions by hand. See section 2.1.2 at page
20 for more information.

3.4 Defining Roll-Over Effects

To create a roll-over effect, you define a script to get called instead of displaying a help tag, and have this
script activate the effect. Then you define another script to get called when the mouse pointer leaves the
hot rectangle, and de-activate the effect.



32 CHAPTER 3. USING 24U SIMPLEHELP UTILITY

Follow these steps to define your roll-over effect:

1. Start by preparing the roll-over effect itself. This can be either a global container fields changing its
content, or a text field changing its formatting, or a sound (such as spoken help) being played via
24U SimpleSound Plug-In. The actual technique you will use is limited only by your imagination.
FileMaker 8 provides a very good set of tools for roll-over effects in its text formatting functions.

2. Create a copy of the “SimpleHelp: On Mouse Over” and “SimpleHelp: On Mouse Out” scripts
and give them unique names. To make your life easier, name them equally, except for the “Mouse
Over” and “Mouse Out” endings. For example, you can name the scripts “Effect A Mouse Over”
and “Effect A Mouse Out”.

3. Modify your new “Mouse Over” script to do whatever will activate your roll-over effect. Typically,
you will set some global field to something. If you did not follow the naming convention advised
above, modify also the SHelp_Set function at the end of the script, so that it has the “Mouse Out”
script’s name in the second parameter.

4. Modify your new “Mouse Out” script to do whatever will de-activate your roll-over effect. Typically,
you will set the same global field to something else.

5. When modifying your help tag with the “SimpleHelp: Modify Tag...” script, click on the “run a
script...” radio button, and enter the name of your new “Mouse Over” script.

Figure 3.9: Selecting a roll-over activator

! Important: The “SimpleHelp: Modify Tag...” script requires 24U SimpleDialog Plug-In 2.7 to be in-
stalled to be able to offer you the “run a script...” option. If you don’t have 24U SimpleDialog Plug-In
2.7 installed, you will have to edit the generated help tag definitions by hand. See section 2.1.2 at page
20 for more information.

3.5 Creating Guided Tours

In addition to providing help to the user right under the mouse pointer, 24U SimpleHelp Plug-In lets you
also create interactive guided tours, taking the user step-by-step through complex workflow procedures.



3.5. CREATING GUIDED TOURS 33

The 24U SimpleHelp Utility provides you with four template scripts which you can use as building blocks
for such guided tours:

The “SimpleHelp: Display Persistent Tag” script will display a help tag with your supplied text at any
specified position within the current layout. Use clones of this script to advise individual steps of your
procedure, one at a time. Any tags displayed with this script or its clones will stay on the screen until
you explicitly request to hide them.

Use the “SimpleHelp: Hide Persistent Tags” script to hide any persistent help tags. The “SimpleHelp:
Draw Coachmark” script will draw a colored oval around any rectangle within the current layout you
specify. Use clones of this script to complement the textual instructions displayed in help tags with
graphical marks, driving the user’s attention to specific layout objects, such as buttons.

Use the “SimpleHelp: Hide Coachmarks” script to hide any drawn coachmarks.

By combining these four scripts and their clones in a wise sequence, you can effectively guide the user
through any complex procedure.

Note: In the current implementation, hiding persistent help tags also hides all coachmarks, and vice
versa. However, do not relay on this implementation as it may change in future.



34 CHAPTER 3. USING 24U SIMPLEHELP UTILITY



Chapter 4

Function Reference

4.1 SHelp AttachTags

Format

SHelp_AttachTags( tag definition {; tag definition... } )

Parameter(s)

tag definition — a help tag definition consisting of hot rectangle coordinates, and a help message;
can be composed as a single textual parameter delimited by the pipe character “ ”, or as two adjacent
textual parameters. One of keywords listed below in the Description can be used in place of hot
rectangle coordinates to have layout objects automatically searched for. To attach a script trigger,
precede the script’s name with two dollar characters “$$”.

Parameters in curly braces { } are optional.

Note: Multiple help tags can be defined within a single function. Additional definitions can be added
as additional parameters, or all definitions can be composed into a single textual parameter, delimited
by line breaks.

Result

number — 0 to indicate success, or an error code to indicate failure

Description

Defines one or more hot rectangles for the current layout, and attaches a help tag or a script trigger to
each of them.

If any specified coordinates match an already defined hot rectangle, the older help tag definition is
replaced with the specified one.

35



36 CHAPTER 4. FUNCTION REFERENCE

If one of the following keywords is used in place of hot rectangle coordinates, 24U SimpleHelp Plug-In
will locate all objects of the specified type on the current layout, define a new hot rectangle for each of
them, and attach the specified help message it. Warning! These keywords work only in Windows version
of 24U SimpleHelp Plug-In.

"all" — every recognized layout object will get the specified help tag attached

"last" — the last displayed tag’s definition will be replaced with the specified one

"buttons" — every button located on the current layout will get the specified help tag
attached

"ellipses" — every ellipse located on the current layout will get the specified help tag
attached

"fields" — every field located on the current layout will get the specified help tag attached

"lines" — every line located on the current layout will get the specified help tag attached

"ovals" — this is an alias for the "ellipses" keyword

"pictures" — every picture located on the current layout will get the specified help tag
attached

"portals" — every portal located on the current layout will get the specified help tag attached

"rectangles" — every rectangle located on the current layout will get the specified help tag
attached

"rounded-rectangles" — every rounded rectangle located on the current layout will get the
specified help tag attached

"text" — every text object located on the current layout will get the specified help tag
attached

Examples

Assume you have an “About” button in the upper left corner of your layout, and you want to attach a
help tag to this button.

SHelp_AttachTags("10,10,90,30"; "Developer credits") attaches the specified message to our About
button.

SHelp_AttachTags("10,10,90,30 Developer credits";) is a compact equivalent of the previous func-
tion, more compatible with older versions of 24U SimpleHelp Plug-In.

SHelp_AttachTags("10,10,90,30"; "$$About") attaches a script named About to our About button.
Instead of displaying a help tag, the “About” script will be triggered when the user moves the mouse
pointer over the About button.

SHelp_AttachTags("10,10,90,30"; "Developer credits"; "100,10,180,30"; "Make new record")
defines two hot rectangles and attaches two help tags to them at once.

SHelp_AttachTags("buttons"; "This is a button") attaches a help tag with the text “This is a
button” to every button on the current layout.



4.1. SHELP ATTACHTAGS 37

Figure 4.1: Sample help tag and its hot rectangle’s coordinates

Special considerations

Although this function can have one or more parameters, FileMaker 8 requires the first semicolon
even when using just one parameter for some reason. So instead of SHelp_AttachTags("10,10,90,30
About") you have to write the function as SHelp_AttachTags("10,10,90,30 About";).

For compatibility with previous versions of 24U SimpleHelp Plug-In, help tag definitions can be combined
in a single textual parameter, delimiting parameters by the pipe “ ” and definitions by line breaks “¶”.
When using this compact parameter format, to use a line break in the help message, you must enclose
the whole message into double quotes:

SHelp_AttachTags("10,10,90,30 \"First line¶Second line\"¶100,10,180,30 Second tag";)

The current version of 24U SimpleHelp Plug-In does not always recognize scripts whose names contain
non-ascii characters. It is strongly recommended to use only ASCII characters for names of scripts which
are supposed to be triggered by 24U SimpleHelp Plug-In.



38 CHAPTER 4. FUNCTION REFERENCE

4.2 SHelp DetachTags

Format

SHelp_DetachTags( tag specification {; tag specification... } )

Parameter(s)

tag specification — a string containing either coordinates of an existing help tag’s hot rectangle,
or the word "last" representing the last displayed help tag, or the word "all" representing all
hot rectangles on the current layout. Additional help tags can be specified either as additional
parameters, or in a single parameter delimited by the pipe character “ ”.

Parameters in curly braces { } are optional.

Result

number — 0 to indicate success, or an error code to indicate failure

Description

Removes (detaches) specified help tag(s) (and roll-over effects) from the current layout.

Examples

Assume you have defined help tags for two layout buttons using the following calculation:
SHelp_AttachTags("10,10,90,30"; "Developer credits"; "100,10,180,30";
"Create new record").

SHelp_DetachTags("10,10,90,30"; "100,10,180,30") undefines both help tags, so the 24U Simple-
Help Plug-In then behaves as if they were never defined.

SHelp_DetachTags("10,10,90,30 100,10,180,30";) is a compact equivalent of the above example,
more compatible with older versions of 24U SimpleHelp Plug-In.

SHelp_DetachTags("100,10,180,30";) undefines the “Create new record” tag, while leaving the “De-
veloper credits” tag intact.

SHelp_DetachTags("all";) undefines all help tags defined on the current layout

SHelp_DetachTags("last";) undefines the last help tag that was displayed, or the currently displayed
help tag if one is visible

Special considerations

Although this function can have one or more parameters, FileMaker 8 requires the first semicolon even
when using just one parameter for some reason. So instead of SHelp_DetachTags("100,10,180,30")
you have to write the function as SHelp_DetachTags("100,10,180,30";).

Previous versions of 24U SimpleHelp Plug-In allowed the same string to be used with both the attaching
and detaching functions. If you use the old compact one-parameter approach, you can utilize this feature
with this version as well. So the following calculation will safely ignore the help messages and detach the
specified tags:

SHelp_DetachTags("10,10,90,30 \"First line¶Second line\"¶
100,10,180,30 Second tag";)



4.3. SHELP GET 39

4.3 SHelp Get

Format

SHelp_Get( selector )

Parameter(s)

selector — the name of a customizable option or status information (one of the values listed below
in Description)

Result

number or text — the current value of the customizable option specified by selector

Description

Returns the current value of the specified customizable option or status information. One of the following
text strings can be used as a customizable option selector. Use:

"tag-background-color" to get the default background color for help tags

"tag-frame-color" to get the default color for help tag’s borders (Windows only)

"tag-text-color" to get the default color for text displayed in help tags

"tag-popup-delay" to get the default time that needs to elapse before a help tag appears
after moving the mouse pointer into a hot rectangle; the value of 0 indicates that displaying
help tags is turned off temporarily

"coach-color" to get the default color for coachmarks

"current-layout" to get the name of the current layout as recognized by SimpleHelp

"global-layout" to get the name of the layout specified as global

Any color value is represented by a string formatted as "#RRGGBB", where RR is a hexadecimal value of
the red component, GG is a hexadecimal value of the green component, and BB is a hexadecimal value of
the blue component in the standard RGB color space. The same format is used by the HTML standard.

Each of these options can be modified with the SHelp_Set function.

In addition to the selectors listed above, you can also use the following special selectors to get status
information related to SimpleHelp behavior:

"list-tags all" to get definitions of all help tags defined for the current layout

"list-tags last" to get the definition of the last or currently displayed help tag (or last or
currently activated hot rectangle)

"mouse-position" to get the current mouse position in screen coordinates

"mouse-click-position" to get the mouse position at the time of the last click



40 CHAPTER 4. FUNCTION REFERENCE

Examples

Assume that none of the customizable options has been modified since launching the FileMaker applica-
tion, so they all are set to their default values.

SHelp_Get("tag-background-color") returns "#EEEEAA" representing the default yellow background.

SHelp_Get("tag-frame-color") returns "#000000" for the default black frame used on Windows.

SHelp_Get("tag-text-color") returns "#000000" representing the black color used for text in help
tags by default.

SHelp_Get("tag-popup-delay") returns 1.5, the default one-and-half second delay.

SHelp_Get("coach-color") returns "#FF0000", the default red color for coachmarks.



4.4. SHELP REGISTER 41

4.4 SHelp Register

Format

SHelp_Register( registration code )

Parameter(s)

registration code — the registration code obtained from 24U Software for your license

Result

number or text — 0 to indicate success, an error code or an error message to indicate failure

Description

Attempts to unlock (register) your copy of 24U SimpleHelp Plug-In with the specified code. If the code
is valid, 24U SimpleHelp Plug-In gets unlocked and stays in this state until you quit the FileMaker
application, deactivate the plug-in, or the registration code expires. While unlocked, 24U SimpleHelp
Plug-In is fully functional and does not bother the user with a shareware reminder.

! Important: If an invalid code is specified, a registration dialog appears, allowing the user to enter a
valid end-user registration code. If the user enters a valid code, or if the shareware trial period is not
over yet, the function may indicate success even though the code supplied in its parameter was not valid.

Since the unlock is effective only for a single session, you will probably want to use it in a script which
you set to run automatically right after opening your database solution.

This function is the only way how to apply developer license registration codes. However, you can find
it useful also for multi-user registration codes to simplify installation of your solution on a network with
FileMaker Server.

Examples

SHelp_Register("SHL300-ABCDEF-GHIJKL") will fail because the code is invalid. Please purchase a
license to obtain a valid registration code.

Special considerations

If you install 24U SimpleHelp Plug-In and it expires before you get a chance to try it out, please request
a time-limited evaluation code at eval@24uSoftware.com.

mailto:eval@24uSoftware.com


42 CHAPTER 4. FUNCTION REFERENCE

4.5 SHelp Set

Format

SHelp_Set( selector; value )

Parameter(s)

selector — the name of a customizable option (one of the values listed below in Description)

value — the value you want to set the customizable option to

Result

number or text — same as value if successful, an error code to indicate failure

Description

Sets the specified customizable option’s value to the specified value.

One of the following text strings can be used as an option selector. Use:

"tag-background-color" to set the default background color for help tags

"tag-frame-color" to set the default color for help tag’s borders (Windows only)

"tag-text-color" to set the default color for text displayed in help tags

"tag-popup-delay" to set the time that needs to elapse before a help tag appears after
moving the mouse pointer into a hot rectangle; use “off” to turn displaying help tags off
temporarily, use “on” to turn them back on and restore the original value

"coach-color" to set the default color for coachmarks

"current-layout" to consider the specified name being the current layout

"global-layout" to use the specified layout’s help tags for all layouts in the current file

To specify a color value, represent it by a string formatted as "#RRGGBB", where RR is a hexadecimal
value of the red component, GG is a hexadecimal value of the green component, and BB is a hexadecimal
value of the blue component in the standard RGB color space. The same format is used by the HTML
standard.

You can use the SHelp_Get function to check the current value of any of the above options.

In addition to the selectors listed above, you can also use the following special calculation on Windows
to have 24U SimpleHelp Plug-In adopt the system’s default look of tool tips:

SHelp_Set("system-like"; "")

Examples

SHelp_Set("tag-text-color"; "#FFFF00") sets the color for drawing text in help tags to yellow.

SHelp_Set("tag-popup-delay"; 0.02) sets the pop-up delay to the lowest possible value, makes help
tags appear instantly.

SHelp_Set("coach-color"; "#0000FF") sets the color used for drawing coachmarks to blue.



4.6. SHELP SHOWCOACH 43

4.6 SHelp ShowCoach

Format

SHelp_ShowCoach( coachmark coordinates )

Parameter(s)

coachmark coordinates — screen coordinates of a rectangle to be circled with a coachmark, spec-
ified by a string formatted as “L,T,R,B” where L is left, T is top, R is right, and B is bottom
coordinate; or an empty string.

Result

number — 0 to indicate success, or an error code to indicate failure

Description

Circles the specified rectangle with a colored oval called coachmark. If an empty string is passed instead
of coordinates, all currently visible coachmarks get removed.

Examples

Assume you have an “About” button in the upper left corner of your layout, and you want to circle it to
drive the user’s attention to it.

Figure 4.2: Sample buttons and coach mark

SHelp_ShowCoach("10,10,90,30") draws a coachmark around your About button.

SHelp_ShowCoach("") removes any currently displayed coachmarks.

Special considerations

It is recommended that you don’t get more than two coachmarks drawn at the same time, because their
handling routines do not get much time from FileMaker to do their work.



44 CHAPTER 4. FUNCTION REFERENCE

4.7 SHelp ShowTag

Format

SHelp_ShowTag( tag specification {; tag text} )

Parameter(s)

tag specification — either coordinates of the upper left corner for displaying a persistent help
tag, or the word "this" to indicate the currently active hot rectangle.

tag text — a text to display in the help tag; omit this parameter when hiding tags (see Description
below).

Parameters in curly braces { } are optional.

Result

number — 0 to indicate success, or an error code to indicate failure

Description

Displays a help tag on demand. If coordinates are specified as the first parameter in the format "L,T"
where L is desired left and T is desired top coordinate of the help tag, a persistent help tag gets displayed
with the text specified by the second parameter.

If the word "this" is passed as the first parameter and the current script was triggered in a response to
entering a hot rectangle, a help tag appears on the same place where it would normally appear if a help
message was attached to the hot rectangle instead of the script trigger.

If the tag specification is empty, all currently displayed help tags disappear.

Examples

Assume you have an “About” button in the upper left corner of your layout, and you have attached a script
named “About” to the button using the function SHelp_AttachTags("10,10,90,30"; "$$About").

SHelp_ShowTag("10,40"; "Click the About button above to see developer’s credits.") displays
a persistent help tag right below the About button.

SHelp_ShowTag("";) removes the persistent help tag displayed with the previous function.

SHelp_ShowTag("this"; "Not available yet") when used in the “About” script, displays a help tag
with the text “Not available yet” each time the mouse pointer moves over the About button.



4.8. SHELP VERSION 45

4.8 SHelp Version

Format

SHelp_Version( version format )

Parameter(s)

version format — one of the strings listed below in Description, or an empty string

Result

text — version string of the active 24U SimpleHelp Plug-In, formatted as requested by the parameter

Description

Returns the version information about the currently installed and active copy of the 24U SimpleHelp
Plug-In. One of the following selectors can be used to obtain different results. If an unknown selector is
used, the short version info is returned by default. Use:

"short" to get just the version number
"long" to get the plug-in name followed by its version number

"platform" to get platform of the code currently running

Examples

Assume you have the version 3.2 of 24U SimpleHelp Plug-In installed and active.

SHelp_Version("") returns “3.2”

SHelp_Version("short") returns “3.2”

SHelp_Version("long") returns “24U SimpleHelp Plug-In 3.2”

SHelp_Version("platform") returns “Mac OS X” of “Windows” based on what operating system you
are using



Copyright c©2004-2006 by 24U Software, All Rights Reserved.


	1 Introduction
	1.1 Using this manual
	1.2 Using other documentation
	1.3 24U SimpleHelp Plug-In Overview
	1.3.1 Help Tags (Tool Tips)
	1.3.2 Coachmarks
	1.3.3 Roll-over effects
	1.3.4 Special features

	1.4 Installation
	1.5 Registration
	1.6 Support
	1.7 Updating from previous version
	1.8 Automated Installation

	2 Using 24U SimpleHelp Plug-In
	2.1 Using Help Tags
	2.1.1 Static Tags
	2.1.2 Dynamic Tags
	2.1.3 Alternate Tags
	2.1.4 Persistent Tags
	2.1.5 Customizing Help Tags
	2.1.6 Named Layouts
	2.1.7 Global Tags

	2.2 Using Coachmarks
	2.2.1 Displaying Coachmarks
	2.2.2 Customizing Coachmarks

	2.3 Using Roll-over Effects

	3 Using 24U SimpleHelp Utility
	3.1 Preparing your solution
	3.2 Defining Static Help Tags
	3.3 Defining Dynamic Help Tags
	3.4 Defining Roll-Over Effects
	3.5 Creating Guided Tours

	4 Function Reference
	4.1 SHelp-AttachTags
	4.2 SHelp-DetachTags
	4.3 SHelp-Get
	4.4 SHelp-Register
	4.5 SHelp-Set
	4.6 SHelp-ShowCoach
	4.7 SHelp-ShowTag
	4.8 SHelp-Version


